
J. Fluid Mech. ( 1  979), vol. 95, part 4, pp.  635-653 

Printed in Great Britain 
635 

Viscous flow through unsteady symmetric channels 

By P. W. DUCK 
Department of Mathematics Imperial College, London, S.W. 77 

(Received 24 October 1977 and in revised form 27 March 1979) 

The high-Reynolds-number ( K )  flow through a symmetric channel, with walls whose 
shape is time dependent, is studied. The distortion of the walls is of non-dimensional 
height O(K-f) and length O ( l ) ,  this particular size of perturbation being chosen such 
that (for the f i s t  regime of unsteadiness studied) the effects of the unsteadiness, 
viscous diffusion and advection all interact nonlinearly in the region of the fluid near 
the walls. 

For this first regime of unsteadiness the problem is solved numerically. This leads 
on to analytic descriptions for progressively faster time variations of wall shape, and 
in fact the entire range of unsteadiness is covered for this particular size of distortion. 

1. Introduction and statement of the problem 
Much progress has been made recently in the study of steady, high-Reynolds-number 

flows past indentations or constrictions in channels and pipes. For instance, Smith 
( 1 9 7 6 ~ )  considered distortions of channel and pipe walls of slope lying between O(K-') 
and O(K-9) for a non-symmetrical wall perturbation, or between O(K-l) and O(K-t) 
for a symmetrical distortion, K being the Reynolds number. Smith (1  976 b )  went on to 
consider the two upper limits, O(K-G) and O ( K - f ) ,  and later Smith (1977, 1978) 
considered still further parameter ranges for both symmetrical and non-symmetrical 
distortions; the distinction between symmetrical and non-symmetrical flows is a 
fundamental one, since in the latter case the core flow suffers no displacement, and 
consequently the perturbation in the core is of lower order than in corresponding non- 
symmetrical situations. 

However, little progress has as yet been made with corresponding unsteady flows. 
The present work is an extension of that of Smith (1976 b )  to the high-Reynolds-number 
laminar flow of an incompressible fluid through a symmetrical channel, with walls 
whose shape is time dependent, the flow far upstream of the perturbation being steady 
and fully developed. Figure 1 shows the layout of the general situation. 

This study has obvious applications in the physiological context, particularly to 
the problem of blood flow through flexible veins and arteries. In  addition the analysis 
of flow through channels may have relevance in the study offlow through lung airways. 
There is evidence to suggest that precise distributions of flow velocity and rates of 
shear have considerable physiological importance, for conditions such as circulatory 
disease, however detailed flow distribut,ions and shear rates are difficult to measure 
experimentally, and so there is a need for (reliable) theories to describe such flow 
quantities. But such a physical problem is a formidable mathematical one with the 
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FIGURE 1. Layout of the problem. 

combined difficulties of a pulsating basic flow, elastic and moving walls, branching, 
and even the possibility of non-Newtonian flow and turbulence. Consequently in this 
paper we focus our attention on just one of these problems, namely the effect of the 
unsteadiness of the wall on an otherwise steady oncoming Poiseuille flow. 

q is the pressure gradient in the channel far upstream of any distortion, where the 
channel is straight and unperturbed, and here the flow is fully developed and steady, 
v and p are the kinematic viscosity and density respectively, a is the undistorted 
channel width. Then we non-dimensionalize velocities and pressures with respect to 
qa2p-lv-l and aq respectively, ax and ay are taken as distances along and across the 
channel, and the indentations start at  x = 0. The lower (unperturbed) wall lies along 
y = 0, whilst the upper (unperturbed) wall lies along y = 1.  

The Reynolds number K is then defined by 

K = q a 3 / p 2  1. (1 .1)  

In this paper we shall assume throughout that the typical length of any perturbation 
is O(1) on the x scale, and its non-dimensional height is O(K-i),  that is, we shall be 
concerned solely with ‘fine ’ distortions of the channel. This particular size of distortion 
is chosen such that (for the first regime of unsteadiness considered), the effects of the 
unsteadiness, viscous diffusion and advection all balance near the walls, and so this 
particular size of perturbation is likely to be of most interest. Incidentally, in the 
steady case for this size of distortion the viscous and advective terms balance in the 
wall layer. 

If a typical time scale is l/Q (for an oscillatory wall motion, Q would be the 
frequency of oscillation) then we non-dimensionalize time with respect to l/Q, and 
set the unsteadiness parameter po = vm-ba-1. 

(Physically this may be interpreted as the ratio of the viscous length (vK2-t) to a 
typical length (a).) 

With these scalings, the continuity and Navier-Stokes equations may be written in 
the form 

divu = 0, 
1 au 

+K(u.V)u = -Vp+V2u Eat 
where u = ( u , ~ ) .  
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The channel walls are described by 

y = hK-*F(x, t )  lower, 

y = 1 - h K - * ~ ( x ,  t )  upper, 

with P(x < O,t) = 0, IhF(x,t)[ < O(1). (1.6) 

U ( X ,  hK-* F(x ,  t ) ,  t )  = U(X, 1 - hK-* F(x ,  t ) ,  t )  = 0, (1.7) 

The boundary conditions on these two walls are, first, the condition of no slip: 

and, second, that  the normal velocity of the fluid on the walls must equal the wall 
velocity, i.e. 

V ( X ,  hK-*F(x, t ) ,  t )  = K-4 hF,(x, t)/Pi, 
(1.8) 1 V ( X ,  1 - hK-* F(x,  t ) ,  t )  = - K-%hF,(x, t) /Pi.  

In addition the solution must join, far upstream, to  the fully-developed (Poiseuille) 
motion: 

wherep, is an arbitrary constant. It should be noted that because of the nature of the 
problem there is a (time-dependent) discrepancy between the net flows far upstream 
and far downstream of the distortion, this discrepancy being related to the rate of 
change of area of the indented section. Consequently, in an experimental situation, in 
which the flow is driven by a prescribed pressure gradient, the condition of a steady 
flow far upstream might be difficult to  achieve in practice. This situation is aggravated 
by the fact that  the perturbation pressure is generally of higher order than the driving 
pressure (unless 1x1 9 1) and so very long channels would have to be used in any 
experimental situation. More quantitative details of this will be given in the discussion 
in 45. 

Smith (19766) considered the same basic problem. However, his discussion was 
limited to humps of slope (a)  between O(K-l) and O ( K - f )  for symmetric flows, and 
between O(K-l) and O(K-4) for asymmetric flows, with Po = O(aK-4). Moreover, he 
assumed a small distortion height, i.e. h < 1, enabling him to obtain a perturbation 
solution, based on the upstream Poiseuille flow. 

Here a study is made of the effects on the motion resulting from increasingly fast 
variations in the wall shape. We start in $2 ,  by considering the case of moderate 
unsteadiness where Po = K-)P, with /3 = O(1).  For this regime of the unsteadiness 
parameter, the problem (posed by Smith 19766) is nonlinear and must be tackled 
numerically, although there is no appreciable upstream influence. 

The reason for this nonlinearity is that with this order of Po, and this size of hump, 
we find that in the boundary-layer approximation of the x-momentum equation, the 
time derivative term balances with the viscous diffusion and advection terms. The 
numerical results presented indicate, however, that  as /3 + 0 an analytic asymptotic 
description emerges. This description leads us on to consider next, in 3 3, ‘fast’ time 
variations defined by the order of magnitude Po = O(K-B). For this case we find that 
the form of the solution is markedly different from the previous regime in a number of 
respects, including the presence of appreciable upstream influence, although asymp- 
totic analysis is again possible. For this regime of Po i t  is found that the velocity 
induced by the motion of the wall balances with the oncoming Poiseuille flow in the 
streamwise momentum equation near the walls. The properties of the solution 
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obtained in 5 3 then lead us on further to study the order of magnitude Po = O(K-8) 
(‘very fast’ time variations), for which yet another structure for the solution emerges, 
the velocity induced by the wall motion balancing with the on-coming Poiseuille flow 
in the core in the equations of motion. Further near the walls the effect of the distortion 
is dominant over the undisturbed flow up to distances x = - (1/3n) In K+0(1) 
upstream of the wall distortions. 

We find that with the appropriate limits of the unsteadiness parameter the results 
of $3 reproduce the (limiting) results of 3 2 and $ 4, i.e. the asymptotic results obtained 
are commutative, as one might expect. Finally, the discussion of the results is 
presented in Q 5. 

2. Moderate unsteadiness (Po = O(K-))) 
We set Po = K-*P, where /3 = O(1) and we find, following Smith (19763), that the 

flow consists of three zones: an inviscid rotational core motion (region 1 below), 
bounded by two viscous layers (region 2 below), adjoining the walls, which are identical 
for symmetrical wall motions. 

Region 1. In  the core zone where 0 < y < 1, a perturbation to the Poiseuille flow is 
to be expected, the solution developing in the same form as of Smith (1976b), i.e. 

(2.1) I $ = $o(y) + K-)$L-,(x, Y, t )  + * * * 9 

= U0(y) + K-h,(z, y, t )  + . . *, 

v = K-%,(x, y, t )  + ... and p = K)p,(x, y, t )  + ..., 
where u = fru and v = - $x, and where $,(y) is the basic (Poiseuille) flow. Note that 
the driving pressure gradient is O( 1)  and so the perturbation pressure dominates in the 
pressure expansion. 

With the expansions of (2.1), the governing equations (1.4) yield, for Po = O(K-*) 

uov2v, = Vl uouu, VIU + U I X  = 0, 
with the two constraints: 

i vl(x, 4) = 0 

vl(x, 0) = - 2 - (x, t )  

(symmetry condition), 

ap0 

ax (defined below). 

This differential system is similar to that obtained by Smith (19763) for flow in 
symmetrical, steady channels of distortions of slope O(K-*), and so for moderate 
unsteadiness time dependence appears only parametrically [through the pressure 
gradient in (2.3)]. In  the core, as noted by Smith (19763) the system described above 
may be solved by extending the analysis of Tillet (1968) for the problem of the liquid 
jet emerging from a channel. 

Because the condition of no slip on the walls has been relaxed in (2.2)-(2.3), a viscous 
wall layer is required, from which the pressure gradient aPo/ax is determined: 

Region 2. In  the lower viscous wall layer, where y = K-*(x + hF) and where z = O( l),  
the solution may be expanded in the form (again following Smith 19766) 

$ = K-W0(x,  2,  t )  + .. .) p = Kipo(%, t )  + . . .. (2.4) 
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Using (1.4) again, the equation for 'Yo is the unsteady boundary-layer equation, i.e. 

with Po = Po(x, t) and Yo,(z = 0) = - hl$/P2, 'Yoz(z = 0) = 0, (2.6) 

and, as z -+ co, 
Yo -+ 2P0 4- $(Z + hP)2. 

We now consider the numerical solution of this system. 
When there is a discontinuous change in wall shape a t  x = 0, the flow adjusts in a 

singular fashion to the distortion, the effects of the wall growing inside a sublayer of 
thickness O ( d )  for 0 < x < I. In  fact inspection of the unsteady boundary-layer 
equation (2.5) reveals that the solution may be expected to develop in the form: 

where 

Consequently, in order that the numerical scheme should be accurate near x = 0, for 
discontinuous wall shapes, the stream function must be expressed as follows : 

whilst the pressure is written in the form 

Po = t4;4&(t, t). (2.10) 

Note that for smooth wall shapes it is possible to work with the original physical 
variables - Yo, Po, x and z -  but the general numerical method to be described would 
otherwise remain the same. 

When we write 
c = H , , ,  e = c  1)' (2.11) 

then in the new co-ordinate system, (2.5) becomes 

- 1 [flzc, - h[Fte] + $c2+ - E ccl - geH -$ eHE = - (3& 4E2 + f13 3 Ql) + e,,. (2.12) Pa 3 3 

The three first-order differential equations represented by (2.1 1)  and (2.12) were 
approximated by three finite difference equations. With step lengths A t ,  A7 and At, the 
fsecond-order accurate) differencing of (2. I1 ) was centred at points (Ed, qi - &A?, t k )  
whilst (2.12) was differenced (and averaged) about (& - *At, vi - $AT, t ,  - $At), where 
( t i , q j , t , )  are the (ith, j th,  kth) points in the ((,7, t )  directions. A Newton iteration 
scheme was employed to deal with the nonlinearity of the equations, and the resulting 
matrix equation for the increments 6H(fli,  qj, t k ) ,  &(ti, qi, t ,) and 6e(fli, vi, t k ) ,  j = 1, 
N was then solved by Gaussian elimination, the diagonal nature of the 'left-hand side ' 
of the equation being fully exploited in a manner explained by Smith (1974). The 
solution was obtained by marching first in the and then in the t direction, because of 
the parabolic nature of the boundary layer equations. In  the calculations, step lengths 
of A7 = 0-25 and A[ = 0-0625 were found adequate, with 'infinity' in the 7 direction 
being taken at  7 = 10. Since the solutions were started from the unperturbed state, the 
step lengths in time were generally started a t  0.001 (or even smaller, if necessary), and 
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FIGURE 2. Wall shear distributions for /3 = 1, h = 1 (nonlinear solution). 
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FIGURE 3. Excess wall pressure distributions for 
/3 = 1, h = 1 (nonlinear solution). 
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FIGURE 4. Wall shear distributions for /l = 0.5, h = 1 (dashed lines denote asymptotic 
solutions, solid lines nonlinear solutions). 

64 1 

FIGURE 5. Excess wall pressure distributions for /3 = 0-5, h = 1 (dashed lines denote 
asymptotic solutions, solid lines nonlinear solutions). 

gradually increased to about 0.05 as the calculation progressed. UsualIy just four or 
five iterations were required for convergence (defined when the maximum change in 
any of the calculated flow quantities was 10-8). 

Some of the results of sets of calculations are presented in figures 2-6, which show 
wall perturbation pressure and wall shear (Yozz(z, 0, t ) )  distributions for distortions of 
the form F(x,  t )  = 2H(t)  H ( x )  z e-& sin t (2.13) 

22 F L M  95 
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FIGURE 6. Wall shear distributions for /3 = 0.5, h = 2 (dashed lines denote asymptotic 

solutions, solid lines nonlinear solutions). 
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FIGUI~E 7. Excess wall pressure distributions for = 0.5, h = 2 (dashed lines denote 
asymptotic solutions, solid lines nonlinear solutions). 
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where H ( t )  is the Heaviside function. This form corresponds to a wall, initially a t  rest 
andunperturbed, which a t  t = 0 suddenly begins to move sinusoidally. Figures 2 and 3 
m for the case h = 1 ,  /3 = 1, a t  three particular instants in time. As the hump rises, 
the shear increases and the excess wall pressure falls over the hump (the reverse occurs 
when the hump is falling). As 2 -+ 03, the shear returns to its Poiseuille value of 4, 
whilst the pressure appears to asymptote to  a constant value. Interestingly enough, 
these and all the results obtained indicated that the solution settled down to a periodic 
form very quickly, in spite of the impulsive start to the wall motion. Figures 4 and 5 
are for h = 1 ,  /3 = $ and the results show similar trends to those of the previous set. The 
most noticeable difference is the change in the order of the pressure for t z 3.16 in the 
two cases, the pressure this time asymptoting to a value about four times that of the 
previous example. The third set, shown in figures 6 and 7 ,  are for h = 2,  /3 = 4, and we 
see that as the hump is falling a region of flow reversal occurs owing to the large, adverse 
pressure gradient encountered. Although the numerical scheme is strictly invalid in 
such regions, this type of phenomenon has been encountered by a number of authors, 
for instance Stewartson & Williams (1969) .  Because the negative velocities in the 
example were small, and the region in which such reversals occurred was small, the 
numerical scheme continued to converge. I n  spite of these regions of flow reversal, 
again the pressures appear to asymptote to particular constant values downstream. 

We now consider, briefly, the asymptotic behaviour downstream, i.e. as x -+ +a. 
We shall consider, following our numerical work, distortions that decay exponentially 
downstream. Then the boundary conditions (2 .6 )  become, as x .+ +a: 

Yo(x .+ 00) 3 2P0 + &z2 + exponentially small terms; (2.14) 

hGt Y,(z = 0 )  = -- = - 
P2 

(2 .15)  

The solution of (2 .5 )  as x -+ +a, together with (2 .14)  and (2 .15)  appears to be 

( 2 . 1 6 ~ )  

(2.16 b )  

This then shows clearly the pressure asymptoting as x -+ + 00, as noted in the numerical 
results. Although an exponential decay was assumed, for algebraically decaying distor- 
tion heights (provided the perturbation height decays faster than l / x  as x --f + co) then 
the asymptotic expressions for $-, and Po will be given by (2.16) also. 

J3 -+ co results in a quasi-steady type of solution to first order, the steady solution 
being that of Smith ( 1 9 7 6 ~ ) .  

As p -+ 0 the numerical results suggest that the pressure behaves as P-2. This in 
particular suggests that (for 2, 2, t of O( 1))  as /3 -+ 0 we may expect asymptotic expan- 
sions of the form 

(2.17) 

22-2 

Y, = 9 + Y,, + pyO2 + ~ 2 ~ 0 3  + o(p3), 

= +pol + h 0 2  + P21)03 + O(P3). 
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The 0(,8-2) terms arise essentially from the motion of the wall whilst the equation of 
motion (2 .5 )  shows that there are to be no O(p-l) terms. Substituting these expansions 
into the governing equation (2.5), and equating like powers of /?, we find first the 
following simple uniformly valid solution: 

Yoo = - hG,, poo = - +hG, where G(x, t )  = F(x ,  t )  dx (2.18) 

which satisfies the boundary conditions both at the wall and at z = 00. However, 
when considering Yo, we find it is not possible to satisfy all the boundary conditions. 
Relaxing the condition of no slip at z = 0, we find in fact 

l o X  

Yol = +hF + $9, pol = &h2F2. (2.19) 

Consequently a further inner (Stokes) layer of thickness O(K-&F) is required in 
order that the no-slip boundary condition may be satisfied. In  this layer, the stream 
function and z are rescaled as follows 

h h h A 

(Yo+%) = pY = p(Yo+pYl+p2Y2+ ... ), = ps (2.20) 

where @ and 2 are both 0(1) quantities in this inner layer. Then, from substituting 
(2.20) into (2 .5 ) ,  "?,, is governed by the linear (Stokes) equation 

(2.21) 

As an example, if the hump oscillates sinusoidally, then P(x, t )  may be expressed in 

(2.22) 
the form 

where 'c.c.' denotes a complex conjugate, and then the solution of (2.21) is 

F(x,  t )  = f(z) eit + C.C. 

A hf 
O -  2 
Y - - exp (it) ($ [exp ( - ( I  + i) 2/42, - 11 + S> + c.c. 

The process may be continued to higher orders of p, and gives 

arising directly from the basic Poiseuille flow). 
At  O(Po) in (2.5) the governing equation is 

YOkt = 0. 

Y o 3  = Y$)(x, Z) + Y$$(x, t ) ,  
Now we set 

(2.23) 

(2.24) 

(2.25) 

i.e. Yo, has been split into a steady and an unsteady component. Y&) and Yb",' will be 
considered later, once q 2 ( x ,  2, t )  has been determined, from 

A A h  A h  A 

Y&t + ~ o ~ ~ o ~ x  - ~ O X ~ O 2  = -Po12 + Y&Z  ̂ (2.26) 

with the following boundary conditions on P = 0: 
h A 

Y2(", 0, t )  = Y2z*(x, 0, t )  = 0. (2.27) 
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The boundary conditions as 2 + co will be discussed later. We also find it convenient to 
split @, and po3 into two components-the one steady, the other (periodic) time 

dependent, i.e. A 

(2.28) 

Then it is found possible to satisfy boundary conditions (2.27) for $iu), together with 
the condition 

9.~;)(x ,  2, t )  -+ o as B -+ co, (2.29) 

implying Y&'(x, t )  = &(x, t )  = 0. (2.30) 

Specifically, we find, from (2.26) 

I Y 2 ( x ,  2, t )  = %p(x, 2 )  + +'$U)(Z, 2, t ) ,  

p03(%, t ,  = p@(x) +pk?(x, t ) .  

$?) = &h2 ff,{( i + i) [exp( - ( 1  + i)  2) - i] + 2i2exp [ - (1  + i) 2/.J2])exp (2i t )  + C.C. 

(2.31) 
Consider now !?t): Writing 

h $2) = x?) + ex., yo = Xoexp ( i t )  + c.c. (2.32) 
where, from (2.23) 

(2.33) 

Then the governing equation for Xt) is 

(2.34) 

(a bar denoting a complex conjugate). 
Although conditions (2.27) may be satisfied, it  is not possible to solve (2.34) subject 

to a condition of the form (2.29), i.e. the inner boundary layer produces a steady outer 
slip which must be used as an inner condition in the solution of Y&)(x, 2). In  fact X$s) 
is given by 

(1 -i) 

2 4 2  2 4 2  

(8 )  
x2;~; = - @yfz - 1 0 ,  Xog + ~ o g x o ; z  

exp ( - 422) - 4 2  exp [ - (1 + i) 2/42]  x$) = h2 , f f , { i ( i -3)+-  - 1 (13+3i)--  

1 +- ( -  1 + i )  exp [ - (1 -i) 2/42] -i2exp [ - (1 +i) 2/42] 

-- (1 + i) exp [ - (1 + i) 2/ J2] . 
J 2  

J 2  
(2.35) 1 3 

This produces an outer slip of 

hYfX (2.36) X,; (x, 2)  -+ V(x )  = - (i- 3) as 2 -+ co 
8 

to give the inner boundary condition for Y$)(x, 2 ) .  We shall not, for the sake of brevity, 
consider the governing equation for Yo, (which will be seen to be unnecessary for the 
present purposes) except to note that this equation (which is obtained from con- 
sidering the O ( p )  terms in (2.5)) is the first in which there is a non-trivial interaction 
between the Poiseuille flow and the velocity induced by the wall motion. 

(8 )  

Considering now the O(p2)  terms in (2.5) we find 

y0.5zt + + gzl y03zx + #h&y03z - ~ z h ' % y 0 3 z z ~  gY03z = -r)03z+ y03zzz. (2'37) 
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However, we already know that 

Yo3 = %!(x, d, PO3 = p&)(x) only, (2.38) 

and so equating just the steady terms in (2.37) gives 

+zY& - *Y&L = -p&& + Y&,. (2.39) 

Differentiating with respect to z, and applying the Fourier transform with respect 
to x. with 

Y&) exp ( - iox) dx, 

yields 

and so 

(2.40) 

(2.41) 

(2.42) 

where U* = (V* + r*) is the Fourier transform of the inner slip, V ( x )  given by (2.34). 
The transform of the pressure term P$J is 

(2.43) 

A comparison between the pressure and shear distribution using the above asymp- 
totic theory forg -+ 0 and the numerical results discussed earlier is shown in figures 4-7, 
the asymptotic theory results denoted by dashed lines. This reveals that even for 
B = 4, the numerical results (particularly the pressure) discussed previously in this 
section are described remarkably well by the asymptotic theory. Note also that the 
results of this B -+ 0 analysis as x -+ CQ reproduce the asymptotic forms of the full non- 
linear system. 

This /3 + 0 theory leads us to inspect the next regime of Po, namely ,8 = O(K-4) 
when the form of the core solution changes, with time derivatives first appearing in the 
governing equation in the core. 

3. Fast time variations (Po = O(K-*)) 
Let us write /?,, = K-4& where P1 is O( 1).  In  the core zone, guided by the results from 

the previous section for moderate unsteadiness, we again expect the effect of the hump 
to be a small perturbation to the upstream Poiseuille flow $.,(y), but this time expand 
the solution as follows. 

$ = $o(Y)+ri -+$l (z .Y, t )+ . . . , }  (3.1) 
Region 1. 

p = K#pl(a,y,t)+ ... 
where $l is described by 

I 
- V2@lt - $ lx  $OYYY -I- ~ O , V 2 ~ 1 X  = 0 B; 

with $1@9 0) = - hG,/pq, +l&> 4) = 0. ( 3 4  

The solution appears difficult in general - the equation being essentially the 
Rayleigh equation, with additional (time derivative) terms. However, the solution 
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may be accomplished in two extremes. First, in the limit p1 -+ co, the equation in the 
core reduces to a quasi-steady form, essentially the same as that of (2 .2 ) ,  and, as noted 
earlier, has been discussed by Smith (19763) (although in the wall layers the flow will 
be truly unsteady, and will be seen to match the results in 4 2 as @' -+ 0) .  Second, taking 
the other limit, as Pl -+ 0,  the equation reduces to the form 

a 
- (92$1) = 0. (3.31 at 

Taking Fourier transforms in the x direction and using asterisks to denote transformed 
variables: 

$? = jm $l(x,  y ,  t )  e-iwxdx 
- W  

then $f = A(w)sinhw(y-4). 
Using the boundary conditions gives 

so that 

$f = - hG'(w) sinh w(y - +) cosech $w 
84 

hG:(w) sinh w ( y  - Q) eizz 
84 sinh &w 

dw. 

(3 .4)  

(3 .5)  

In particular the slip at  y = 0, for x c 0, is (using contour integration in the lower half 
of the w plane) 

l a  
u l (x ,  t )  = $ly(x,  0,  t )  = - z 4mnhGt(  - 2im7r) eZmnz. 

8 4 m =  1 

Whilst for x > 0 we find the slip on y = 0 is 

1 m  
u l (x ,  t )  = 2 z 4mn hGt(2imn) e-zmnz. 

Plna=1 

( 3 . 7 ~ )  

(3 .7b)  

Although the above is for Bl + 0,  the pl = O( 1) case would also produce a slip of this 
kind. Note that the solution now has upstream influence, and so we require an inner 
(boundary-layer type) solution upstream of the hump, as well as over the hump itself. 

Region 2. Returning to the case when pl is O( l ) ,  we scale variables in the boundary 
layer in the following manner: 

y = Ka(hB'+ z ) ,  (3 .8 )  

(3 .9 )  

p = K ~ P ( x ,  t ) ,  (3 .10)  

with ap aP1 
ax ax 
- =- (3.11) 

where z, Y, P are O( 1) quantities inside this boundary layer, and u1 is the slip produced 
by the outer solution (given by (3 .7)  for the case pl + 0). Note that upstream of the 
hump (z < O ) ,  

F r G = O .  (3.12) 
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The results of the previous section suggest that Y must be expanded as follows: 

Y = Yo+K-W1+O(K-f). (3.13) 

Using (1.4), Yo is found to be governed by 

so that 

(3.14) 

(3.15) 

This implies that the inner condition of no slip is not satisfied, and so, rescaling again 
inside : 

Region 3. We introduce a further inner (Stokes) layer by scaling 
h 

Y = K-BY, z = K-*2 (3.16) 

(the pressure scaling is unchanged), where !? is expanded in the following manner 

!i? = *o+K-i+l+ .... (3.17) 

(This is suggested, again, by the previous section.) Then from (1.4) !i?o is to be deter- 
mined from the linear Stokes layer equation: 

h h 
with boundary conditions : 

To match with q0 the solution above, we must have 

Yo&, 0, t )  = Yo;(x, 0, t )  = 0. 

(3.18) 

(3.19) 

Yo~(x, 2, t )  -+ ul(z, t )  + $hF(x, t )  as 2 --f 00. (3.20) 

If we restrict our discussion to  oscillatory humps (of the form (2.22)), then we may 

(3.21) write +hF(z, t )  + ul(z, t )  = vl(x) eit + C.C. 

and using (3.18)-(3.20) gives 

(3.22) yo = vl( 2 + - p1 [exp ( - ( 1 + i) 2/42 pl) - i]} + c.c. 

Note that as P1 -+ 00, the fast variation solution matches with the previous case of 
moderate unsteadiness, Po = O(K-*). For Po = O(K--&), we see sizeable upstream 
influence appearing in the solution and growing. The region where the flow begins to 
pulsate appreciably moves upstream, away from the hump as P1 becomes smaller, 
although the behaviour of the pat'h of this region depends on detailed knowledge of 
the core solution (i.e. the solution of (3.2)). 

We next go on to consider the very fast variation case Po = O(K-P) when the 
character of the core solution changes once again, with the effect of the disturbance of 
the wall being of the same order as the basic flow in the core. 

A l - i  

4 2  
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4. Very fast time variations (Po = O(K-8)) 
This time set Po = K-%P,, with P2 = O(1). Prom the results of the previous regime 

of Po (in particular as P1 -+ 0 )  we can expect the solution in the core zone to develop in 
the form 

(4.1) 1 1c. = 1c.& Y ,  t )  + * - * 9 

P = K$P,(x, y ,  t )  + . . . 
and so now the effect of the hump is of the same order as the Poiseuille flow in the core. 

From (1.4), the equation for @o is found to be 

with the following boundary conditions: 

1c.o(x, 094 = hGt/P,2, $o&, 8, t )  = 0. 

If $,, is split into two components, one steady, the other unsteady: 

1c.o = $PYX, y, t )  + 1c.P(x, Y ) ,  (4.3) 

then in order to satisfy the upstream boundary conditions 1c.t) must be the solution for 
Poiseuille flow, whilst I,@) may be identified directly with described by (3.6). 1c.P) 
will produce a slip on the (lower) channel wall, described by 

u1(2, t )  = $&)(x, 0, t )  (4.4) 

(with a similar expression for the upper channel wall) and so again a boundary layer 
of thickness O(K-+) is required near y = 0,  in which variables are scaled as follows: 

p = K+P(x,t), J 
and y = K-+(Z+hF). 

If YP and P are expanded in the form: 

1 Y = Y0+K-fY1+ ..., 
P = P,+K-+Pl+ ..., 

then, from the Navier-Stokes equations, (1.4), Yo is to be found from 

ap0 YO$, = -- 
ax 

and so to match with the core solution, we must have that 

Yo = ulz. 

(4.7) 

(4.9) 

Again, a further boundary (Stokes) layer is needed in order to reduce the slip to zero 
at the wall, this time of thickness O(K-8). Now O( 1) variables 9, 2 are introduced as 
follows : z = K-42, 

(4.10) 
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By (1.4)) Yo is the solution to 

(4.11) 

For oscillatory humps, i.e. those described by (2.22), we may write, for x < 0: 

Yo = iv,(x)exp(it) [exp(-(1+i)P/J2P2)- l])+c.c. (4.12) 

where 

with (4.13) 

As a further example, to illustrate how the analysis can treat non-periodic move- 
ments, consider the case of initially flat walls, which suddenly, a t  t = 0, start to 
grow humps (a constriction) in a linear manner, i.e. 

P(x,  t )  = t W f ( 4 ,  (4.14) 

where H ( t )  is the Heaviside function, and where J f ( x ) l  < O(1).  Note that although 
this is not an oscillatory motion, there will still be a single timescale a,ssociated with 
this motion, namely the time for the (dimensional) height of the distortion to rise 
O(nK-*) (where a is the undistorted channel width). Obviously as t + co we expect 
the solution to break down, because of the condition I hF(x, t)  I < O( 1) being violated, 

(4.15) 
none the less we find 

where vl(x) is given by (4.13). Yo then is described by (4.9) and (4.11) becomes 

u1(x, t)  = H(t) tv , (4  

Using Laplace transforms we find 

iPo = vl(x) (9t - 

(4.16) 

(4.17) 

in erfc 7 = in-l erfc 7 dy, n = 1 , 2,3, . . . (4.18) s," where 

and iOerfc7 = erfc 7. 
Returning now to the general problem, consider the region far upstream where, in 

the core, the Poiseuille flow and the disturbance component of the flow are no longer 
of the same order. I n  other words, we are considering how far upstream the effect of 
the unsteady wall permeates. 

From (4.13), we see that as x + -a: 

(4.19) 
4inh 

vl(x) N g*( - 2in) e2nX. 
P 2  

The first change to the solution will occur when vl(x) = O(K-*), when in the upper 
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viscous layer (region 2) the contribution from the disturbance is of similar magnitude 
to the Poiseuille component. This will occur when (by (4.19)) 

x = -- ' InK+0(1) 
6n 

(4.20) 

(cf. Smith 19773). So in this region we rescale in the x direction, introducing a new 
co-ordinate 3, where 

(4.21) x=- - lnK+Z 
1 

67r 

and the core expansion is now expected to be 

(4.22) 

[suggested by (4.1), (4.19) and (4.20)]. Here @1 is governed by (3.2) and produces a 
slip ul(3,t) = Ylv(y = 0) given by 

1 
ul(Z, t )  = - 4nhG*( - 2in) ezn; 

P: 
(4.23) 

and so we introduce a boundary layer of thickness O(K-*) near the wall, defining new 
variables z, Y by 

z = K*y, 

Y = Kj$ = Yo+ O(K-*). 
(4.24) 

Following the usual procedure, from the governing equations it is found that 

Yo = u1+ $2 (4.25) 

and so an inner layer is required (in order that the slip may be reduced to zero) where 

(4.26) 

A 

Then from the Navier-Stokes equations (1.4), Yo satisfies the Stokes equation, i.e. 

with 
h A 

1 Yo;= Yo= 0 on 2 =  0, 

Y~-+u,  as d + a .  
A (4.27) 

Consequently qo may be found using the method used for equation (4.11). We notice 
that in this lower layer the flow is still dominated by the disturbance caused by the 
hump. It is not until 2 is very large and negative (specifically when 

x = -- ' lnK+B 
3n 

(4.28) 

with 53 = O(1)) that the effects of the basic flow and of the distortion become com- 
parable in the lowest layer. This far upstream, the core solution takes on the form 

(4.29) 
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with $,,(y = 0) given by (4.23). Also we define the boundary-layer variables by 

Y = K*$ = Yo+KWl+ ..., 
z = K ~ Y ,  

and find, using (1.4) that Yo satisfies the Stokes-layer equation 

p = KjP,(Z, t )  + . . . 
(4.30) 

(4.31) 

with boundary conditions Yo = Y, = 0 on z = 0, 

Y o z + u l + ~ z  as z+00. (4.32) 

Consequently the boundary layer is driven by the core solution at this distance 
upstream of the hump. If we split Yo into steady and unsteady components, i.e. 

Yo = Yp(Z, 2 )  +Y$l’(Z, 2, t )  (4.33) 

then it is a simple matter to show that ‘€“p) = fz2 (from the Poiseuille flow), whilst 
Ye) is governed by the Stokes equation (4.31), which again may be solved in the usual 
fashion. 

To summarize, we see that for this regime of Po, the effect of the hump propagates 
upstream, and it is not until a distance -1/3n-lnK (upstream) that the main 
(undisturbed) flow asserts its dominance in the boundary layers near the walls of the 
channel. For oscillatory humps it is at  this distance from the hump that the basic and 
oscillatory components of the flow would first become comparable. Note too that the 
results of this section, as p2 -+ 00, match with those of the previous section as P1 --+ 0. 

5. Discussion 
We are now in a position to describe the effects of unsteady walls on an otherwise 

steady channel flow, for progressively faster wall movements (Po descreasing) for 
distortions of height O(K-*). 

First, suppose that Po = O(K-4). Then we see that the steady (Poiseuille) flow and 
the unsteady (Stokes) flow are inextricably coupled in the boundary-layer problem; 
for this order of Po in general we must solve (see 5 2) the nonlinear unsteady boundary- 
layer equation. For this regime of Po, the boundary layer drives the core solution, and 
there is no significant influence upstream of the channel distortion. The numerical 
results of § 2, with Po = K-*/3, show, however, that the asymptotic form derived (in Q 3) 
for /3 --f 0 describes the flow quite reasonably, even for only moderately small values of 
/3( N ij), with the appearance of a second boundary layer - essentially a Stokes layer of 
thickness O(K-*/3). 

As Po becomes progressively smaller, the steady (Poiseuille) flow and the unsteady 
flow components become progressively more decoupled in the viscous layers, the 
effect of the unsteadiness dominating. In  particular, when Po decreases to O(K-*), 
appreciable upstream influence first appears in the motion. The core solution then 
begins to drive the boundary-layer solution. When Po decreases still further, to O(K-j), 
the unsteady disturbance produces an effect of the same order as the main flow itself 
in the core (in the boundary layer the unsteadiness dominates completely over the 
basic flow), at least in the region of the hump. Any further reduction in the order of Po 
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would result in unsteadiness dominating in the core as well, although the leading 
term of the stream function would still be governed by (4.2), however smalI Po. Con- 
sequently for this size of hump (O(K-+)), we have a complete description of the 
flow produced over the entire range of Po, the three regimes of Po matching a t  their 
respective upper and lower limits. 

As noted in the introduction, in any experiment the channel would have to be very 
long in order that the present analysis would be applicable. We are now in a position to 
give more details on this. For Po = O(K-4) we see from $ 2  that the perturbation 
pressure is O(K*). This suggests that in any experiment we must have channels of 
length B O(KA) in order that a t  the channel ends the driving pressure dominates over 
the perturbation pressure. In  0 3 this requirement is increased to O(K*) and in $ 4  
is increased still further to 9 O(K). We therefore see, as the wall motion becomes 
increasingly faster, that longer and longer channels are required in order that the 
analysis of this paper applies. A further experimental requirement, in order that the 
flow upstream be steady, is that the impedance of the upstream portion of the channel 
is considerably greater than that of the downstream part, i.e. the distortion should be 
sited such that the upstream portion of the channel is larger than the downstream 
portion. This would then ensure that the flow-rate fluctuations will be transmitted 
downstream rather than upstream, as required. 

Finally, note that intermediate orders of Po may be described by either the higher 
or lower orders of Po considered in this paper, the asymptotic expansions given 
being commutative. 

The author wishes to thank Dr F. T. Smith for suggesting the problem, and for many 
useful discussions. The financial support of the Science Research Council is also 
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presentation of this paper. 
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